M1. (a) (i) $\mathrm{C}_{8} \mathrm{H}_{18}+81 / 2 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}+9 \mathrm{H}_{2} \mathrm{O}$ (1) $O R$ double this equation
(ii) Condition: Spark OR high T OR T $=2500-4000{ }^{\circ} \mathrm{C}$ (1)

Equation: $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$ (1)
OR half this equation
(b) (i) platinum OR rhodium OR palladium (1)
(ii) $2 \mathrm{CO}+2 \mathrm{NO} \rightarrow \mathrm{N}_{2}+2 \mathrm{CO}_{2}$ (1) OR half this equation
(c) Reason for $\mathrm{SO}_{2}$ in exhaust gases: fraction / petrol / fuels contain sulphur or sulphur-containing impurities (which burn to give $\mathrm{SO}_{2}$ ) (1)

Environmental effect $\mathrm{SO}_{2}$ : acid rain OR a specific effect (1)
NOT greenhouse effect NOT damages ozone layer

M2. (a) (i) A molecule/compound/it consists/it is composed/it is made up of hydrogen/H and carbon/C only (1)

QoL
(ii) release (heat) energy (when burned) (1) OR provides a (useable form of) energy OR is a source of energy

Accept heat $\equiv$ energy
NOT is energy / is heat
NOT burns exothermically
(iii) $\mathrm{C}_{4} \mathrm{H}_{10}+61 / 2 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$ (1)
$\mathrm{OR} 2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$
ignore state symbols
(iv) $\mathrm{C}_{4} \mathrm{H}_{10}+4 \frac{1}{2} \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}+5 \mathrm{H}_{2} \mathrm{O}$ (1)
$\mathrm{OR} 2 \mathrm{C}_{4} \mathrm{H}_{10}+9 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}+10 \mathrm{H}_{2} \mathrm{O}$
ignore state symbols
(iii) and (iv) if not $C_{4} H_{10}=C E$
(v) Limited or reduced supply of air / oxygen (1)

OR low temperature OR poor mixing
OR insufficient oxygen / air OR shortage of $\mathrm{O}_{2}$
NOT no oxygen / lack of oxygen / not in excess
(b) Structure 1 Structure $2 \quad$ Structure 3

allow credit for positive charge around $C$ atom no alternative carbocations allowed
(c) (i) $\mathrm{C}_{2} \mathrm{H}_{6} / \mathrm{CH}_{3} \mathrm{CH}_{3} \rightarrow \mathrm{CH}_{2}=\mathrm{CH}_{2} / \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} / \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} / \mathrm{CH}_{2} \mathrm{CH}_{2}$

NOT CH2. $\mathrm{CH}_{2}$
(ii) $\mathrm{Al}_{2} \mathrm{O}_{3}$ OR Zeoli(y)te OR aluminosilicate (1)

NOT bauxite
ignore $\mathrm{SiO}_{2}$
NOT Aluminium Silicate
NOT porous pot
NOT SiO 2 alone
(iii) More useful / needed fuels / products OR implied OR more valuable products OR qualified demand exeeds supply OR to produce motor fuels OR petrol OR cycloalkanes OR aromatic hydrocarbons OR balanced alkanes OR smaller molecules OR alkenes

M3. (a) Missing fraction = naphtha (allow naphtha from list if not quoted separately) (1) Order = mineral oil (lubricating oil), gas oil (diesel),
kerosene (paraffin),
naphtha, petrol (gasoline) (1)
Mark order consequential on M1 (if no missing fraction given, M2 = 0) Accept correct reversed order

Negative temperature gradient on the column or temperature of column decreases upwards (1)

Larger molecules or heavier fractions condense at higher temperatures or lower down the column or reference to different boiling points
(ignore mp) (1)
(b) Type of mechanism = (free) radical / homolytic fission - used in complete sentence/phrase (1)
$\mathrm{C}_{21} \mathrm{H}_{44} \rightarrow 3 \mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{C}_{9} \mathrm{H}_{20}$ correct alkenes (1)
Accept $\mathrm{CH}_{2} \mathrm{CH}_{2} \& \mathrm{CH}_{2} \mathrm{CHCH}_{3}$ all correct (1) (1) (lubricating oil), gas oll (diesel),
[10]
(c) (i) Sulphur (containing impurities) burn to form or forms $\mathrm{SO}_{2}$ or oxides of sulphur (if oxide identified, must be correct) (1) OR equation: e.g. $\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}$ or $\mathrm{H}_{2} \mathrm{~S}+1 \frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Leading to acid rain (must have specified oxides of S or burning) or toxic product or respiratory problems (1)
(ii) NO formed by reaction between $\mathrm{N}_{2}$ and $\mathrm{O}_{2}$ from the air (1)
$\mathrm{OR} \mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$
High combustion temperature or spark in engine (1) provides $E_{A}$ or sufficient heat / energy to break $N \equiv N$ (1)
(iii) Need to remove NO as forms acid rain or toxic product or causes respiratory problems (1)
$2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}(1)$
$4 \mathrm{NO}_{2}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{HNO}_{3}(1)$
Need to remove CO as it is poisonous (1)
Catalytic converter (1) uses Pt / Rh / Pd / Ir (wrong answer cancels a correct one) (1) Provides active sites / reduces $\mathrm{E}_{\mathrm{A}}(1)$
Forms $\mathrm{N}_{2}+\mathrm{CO}_{2}$ (1)
$2 \mathrm{NO}+2 \mathrm{CO} \rightarrow \mathrm{N}_{2}+2 \mathrm{CO}_{2}$ (correct equation worth last 2 marks) (1)

